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ABSTRACT

Traditionally, the acquisition of skills and sport movements has been characterized
by numerous repetitions of a presumed model movement pattern to be acquired by
learners. This approach has been questioned by research identifying the presence of
individualized movement patterns and the low probability of occurrence of two identical
movements within and between individuals. In contrast, the differential learning approach
claims advantages for incurring variability in the learning process by adding stochastic
perturbations during practice. These ideas are exemplified by data from a high Jump
experiment which compared the effectiveness of classical and a differential training
approach with a pre-post test design. Results showed clear advantages for the group with
additional stochastic perturbations during the acquisition phase in comparison to
classically trained athletes. Analogies to similar phenomenological effects in the
neurobiological literature are discussed.

INTRODUCTION

Commonalities and differences in traditional motor learning approaches and the question
at everyday actions or sport movements have been addressed by a
of theoretical approaches. Traditional motor learning approaches have included
ion of a to-be-learned target movement (Gentile, 1972), progression
exercises (Gaulhofer and Streicher,
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1924), variability of practice (Schmidt, 1975) and contextual interference learning (Shea and .

Morgan, 1979). The constant repetition approach is based on the idea that the enhancement of
movement skill is only effected by repeating a target movement as often as possible, and
learning by means of methodical series of exercise is founded on exercises that have a
structural similarity to specific parts of a target movement.

In the variability of practice approach, derived from Schmidt’s schema theory (1975), the
representation of movement classes is based on invariant programs and variable parameter
features. A practical consequence of this assumption is that, if a single invariant is trained in
combination with several variable parameters, the program for a specific movement within a
given movement class becomes more stable. In spite of this view, it is worth noting that
experimental support for the variability of practice hypothesis has mainly been provided from
a specific range of movement tasks (Wulf and Shea, 2002) that have primarily required the
production of muscular forces, but which have tended to minimize the influence of
gravitational forces and moments of inertia (Schneider, Zernicke, Ulrich, Jensen, and Thelen,
1990). Additionally, weaknesses in experimental designs have led to indeterminate evidence
in favour of the advantage of variable practice in comparison to constant practice (van
Rossum, 1990).

While the variability of practice approach has emphasized investigation of the role in
practice of variation of movement elements, the contextual interference (Cl) approach
maintains a stronger focus on the variation of the practice conditions with respect to the
sequential order of different movements. The CI approach, was originally transferred from
language learning experiments (Battig, 1966) into movement sciences (Shea et al., 1979). It
occurs when at least two types of movements are learned in parallel (Goode and Magill, 1986;
Lee and Magill, 1983). The more randomized (high CI) is a sequence of movement tasks
during the acquisition period, the greater are expectations that the movements will interfere
with each other in comparison to a less randomized (blocked) sequence (low CI). It has been
observed that in retention or transfer tests high ClI (alternating sequence) groups display
smaller decreases in performance than low CI groups (blocked sequence). Meta analyses
(e.g., Brady, 2004; Magill and Hall, 1990) have provided evidence for these effects primarily
if the learned movements stem from different movement classes with different invariant
features (e.g. different relative timing). The effect is assumed not to occur in children (Wulf
and Shea, 2002) and less experienced participants (Smith, Gregory, and Davies, 2003),
leading to a recommendation that learning new skills should begin with blocked training
before random practice follows on a more experienced level (Wulfetal., 2002).

A most intriguing phenomenon was identified when the methodical series approach was
interpreted in terms of contextual interference learning (Smith and Davies, 1995). By learning
a single movement through different sequences of preparation exercises, facilitation, rather
than interference, was predicted during the acquisition period. When movements have been
learned in most variable environments, higher rates of improvement have been observed in
the acquisition phase when high Cl was applied. For instance, in one case water served as
variable environment for acquiring a pawlata role in kayaking (Smith and Davies, 1995)
while in another case snow texture created a variable environment for learning snowboarding
skills (Smith, 2002).

In these traditional motor learning approaches, despite some fundamental distinctions
between the contextual-interference, the variability-of-practice, and the repetition approaches,
all commonly rely on the implicit assumption of the need for learners to acquire a constant

ta
th
pc
di
af
(h
di

¢
c(
€>

ar
le
Vi
le
fr

to
m
n
hy




aand .
ant of
,, and
e a

D, the
meter
1ied in
thin a
2 that
from
:d the
ce of
1elen,
dence
(van

sle in
roach
0 the
from
9). It
1986;
tasks
erfere
; been
isplay
alyses
narily
ariant
(Wulf
1003),

ning

h was
rning
rather
been
/ed in
red as
1995)

wrding

ctions
aches,
nstant

Increasing Stochastic Perturbations Enhances Acquisition and Learning... 6l

target movement with at least some invariant features. While the repetition approach favours
the stability of a movement by simply repeating all parts of the movement as often as
possible, the variability of practice approach rather assumes that invariants can be refined in
different combinations with variable parameters. Furthermore, the contextual interference
approach claims to improve the stability of a target movement by changing the short term
(historic) associations for a target movement by preceding it with different movements with
different invariants.

Another important feature common to most traditional motor learning approaches is a
generic view of movement variance with respect to the target movements. Variance 18
considered to occur as a result of erroneous or noisy (Schmidt, 1991) movement planning or
execution, requiring error minimization in learners by encouraging them to only practice a
movement correctly. From this perspective, variance is accredited with a destructive character
and occurs as a result of serendipitous movement €rrors which passively accompany the
learning process. While the repetition approach favours the complete avoidance of errors, the
variability of practice and CI approach concede some benefit in some movement errors in the
learning process (Magill, 1993, p. 363) since they enhance performer awareness of deviations
from a target movement to facilitate conscious corrections for future executions. From this
perspective, a certain amount of variance in the target movement is mainly conceived and
tolerated as a source of inherent system error. In traditional approaches, variance in the target
movement is only considered to play a passive, destructive role because it is included
implicitly in the explanation of Cl-effects within the Elaboration and Reconstruction

hypothesis.

DIFFERENTIAL LEARNING APPROACH

In contrast to these traditional views, the differential learning approach contains several
alternative assumptions based on ideas from dynamical systems theory, artificial neural net
research, and stochastic resonance phenomena. Furthermore, differential learning can be
explained by focusing on differences between consecutive movements while avoiding
movement repetitions to exploit the constructive role of fluctuations during the learning
process. [n the remainder of this chapter, we outline the differential learning approach in more
detail. An important idea in the differential learning approach is the enlargement of
differences between subsequent movements in order to produce additional information for the
system. This idea is mainly anchored in philosophical approaches to cognition (Heidegger,
1957; Derrida, 1982; Spencer-Brown, 1997), and can be comprehended by understanding
how the visual and auditory sensory systems function in the nervous system. In the visual
system the difference between an object’s image from the left and right eye on the retina
provides observers with ‘wformation on its distance. In the auditory system the difference in
the time delay of an acoustic signal received in the left and right ear is perceived as
information for the spatial orientation of a signal. Additionally, from a physical point of view,
information production is based on a choice between at least two different states (= 1 bit;
Shannon, 1948).

The fundamental idea, that movement variability is considered a necessity for adaptive
system function, can be traced back to the dynamical systems perspective, where fluctuations
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are considered as necessary for functional adaptations to changing environmental contexts
and the prevention of loss of system complexity as constraints change (Button, Davids, and
Schollhorn, 2006: Kelso, 1995; Schéner and Kelso, 1988). Deviations from an intended
movement are not considered as errors but rather as fluctuations and intermittencies in system
organization (Tumer and Brainard, 2007). When applied to the study of motor control,
fluctuations are particularly important in the adaptive process of switching between stable
movement patterns during goal directed behaviour. Fluctuations also seem to govern motor
learning processes (Zanone and Kelso, 1992) playing an active role during the acquisition
phase.

A similar active and constructive role is ascribed to noise in robotics and artificial neural
network (ANN) research. When a robot is confronted (trained) with noisy stimuli within a
constantly changing environment during the training or fearning phase, much better
orientation to different environmental conditions can be observed in the application phase in
comparison to a robot that has been trained within a constant environment (Miglino, Lund,

and Nolfi, 1995). Training of ANNs with noisy data results in better recognition rates in the

application phase as well (Bishop, 1995). A transfer of ANN research to the study of motor
learning was undertaken by Horak (1992). In his work, the training phase in ANNs was
assigned to the acquisition phase in motor learning and the test phase was aligned with the
transfer test. The simulation of different training schedules by Horak (1992) on the basis of
three simulated data sets led to a smaller error rate for the blocked condition in an acquisition
phase, whereas random and the serial training schedules resulted in smaller error rates for the
transfer test. In this context insights into the simulated transfer abilities may be of specific
interest for motor learning in humans. Within artificial neural nets the quality of transfer
depends highly on the mapping of the transfer task to the nodes’ weights, relative to the
nodes’ weights of the trained tasks. When a transfer task is mapped to an area within the
range of the trained arca then the ANN will interpolate well, as ANNs are typically quite
successful in performing this task. In contrast, a transfer task that is mapped outside the
trained area leads to extrapolation which results in larger error rates (Haykin, 1994). Here
interpolation corresponds to an estimation towards a region located between two known
measurement values, whereas extrapolation is an estimation towards a region that is outside
known measurement values.

These characteristics of ANNs are consistent with the idea of the elaboration hypothesis
which was developed for explaining phenomena in contextual interference experiments and
mainly relies on the assumption of the two processing modes: intra-task and inter-task
processing. The elaboration hypothesis proposes that superior retention results during random
practice are enhanced due to comparisons of multiple tasks in working memory (Shea and
Morgan, 1979). In consequence, during training of ANNs a large neuron space should be
covered (by the input data) in order to allow as much interpolation as possible in the transfer
phase. From a connectionist point of view it is not only the number of influencing neurons but
also the density and distribution of training stimuli that influences the quality of the net in the
test phase. Typically, the area of interest should be covered optimally by stimuli that lead to a
lattice-like distribution over the ANN neuron space with optimal expansion and influence on
the neurons (Hertz, Krogh, and Palmer, 1994; Nguyen and Widrow, 1990). A transfer to
neurobiological learning would correspond to an increased variability in content and

sequences during the acquisition phase in order to enlarge the neuron space of mesh size of
the lattice (Kohonen, 2001).
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In a similar way, the differential learning approach (Schollhorn, 1999) suggests that
motor learning could benefit from adding stochastic perturbations in the form of random or
variable movement components to a target movement pattern. In this context, stochastic
perturbations can be understood as fluctuations which naturally occur during multiple
repetitions of the target movement. The term stochastic is used to denote fluctuations in
movement repetitions that do not seem (o follow any deterministic structure or rule, although
they could also be chaotic instead of noisy (Riley and Turvey, 2002). Traditionally,
perturbations have been interpreted as the arbitrary execution of erroneous movements
whereby the errors are always changing.

The differential learning approach mainly relies on the assumption that each movement
trial has to be considered as individual (Scholthorn and Bauer, 1998; Schollhorn, Nigg,
Stefanyshyn, and Liu, 2002) and unrepeatable (Bernstein 1967; Hatze, 1986). Empirical
evidence for the individuality of movement patterns exists in analyses of world class javelin
throwers, in which individual throwers could be identified over several years by means of
their throwing pattern during the last 200ms of their final throwing phase (Schollhorn and
Bauer, 1998). Furthermore, analysis of several steps of female walkers allowed the
recognition of individuals by means of their ground reaction forces and lower limb kinematics
(recognition rates > 95%) (Scholthorn et al., 2002). In order to find an individual’s situational
optimum, motor learning is not considered as the acquisition and storage process of different
movement parameters. Leaming is rather characterized as the improvement of internal
adaptation processes which is achieved by means of adding stochastic perturbations to a so
called “ideal movement” (Schéllhorn, Michelbrink, Beckmann, Trockel, Sechelmann, and
Davids, 2006).

There is wide ranging assumption of the existence of ‘common optimal movement
patterns’ in the study of human movement behaviour, which is an example of ‘biological
determinism’ in science, particularly manifesting itself in the cognitive sciences,
biomechanics and perceptual-motor disorders (Davids, Bennett, and Newell, 2006). For
example, this assumption has been promulgated in the biomechanics optimization literature
where a consuming challenge has been to identity optimal techniques for the performance of
a wide range of movement activities. The implicit assumption is that identification of optimal
patterns for performing specific movements could lead to improvements in sport performance
while preventing the occurrence of injuries through dysfunctional movement patterning (e.g.,
Glazier and Davids, 2009; Hatze, 1986). From this perspective, an “ideal movement” can be
understood as a person-independent model of a movement that fulfills momentarily, from the
standpoint of science, on average the most effective solution of a given movement task.
Typically, an “ideal movement” is defined within relative narrow borders and remains
constant over time. In the cognitive sciences, as we noted earlier, increasing expertise has
been proposed to lead to movement invariance and the construction of a single motor
program, as argued in some traditional theories of motor control. ‘

The misconception of ‘common optimal movement patterns’ also exists in the motor
control literature where theoretically cogent arguments have been proposed as a rationale for
studying how individuals satisfy unique interacting task and personal constraints coordination
solutions in order to maintain functionality in dynamic environments (Brisson and Alain,
1996; Davids, Bennett, and Newell, 2006). As Latash and Anson (1996) argued, the
“phenomena of variability of voluntary movements by themselves indicate that “correct”
peripheral motor patterns may form a rather wide spectrum” (p. 65).
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In the study of movement disabilities, the implicit 'medical model' or ‘disability as
tragedy model’, used by many clinicians provides a unitary, biologically determined
perspective of health and movement behaviour in which variability, viewed as deviation from
an ‘accepted’ norm, is seen as dysfunctional and an index of abnormality (Davids,
Shuttleworth, Button, Renshaw, and Glazier, 2003; Latash and Anson, 1996).

The addition of randomly fluctuating movement components to a target skill (such as
high jumping) could result in emergent movement solutions changing even after thousands of
performance trials because of dynamic performance conditions (Davids et al., 2003; Hatze,
1986; Schollhorn, 1998). As a consequence of random new elements to movement
repetitions, resonance effects might be instrumental in enhancing the ability of performers to
adapt to these new elements and engage in a process of performance differentiation through
exploring individualized movement solutions (Schéllhorn and Bauer, 1998; Schollhorn et al.,
2002). Resonance effects are typically characterized by an increase in amplitude of
oscillations of a signal exposed to an external force. While two anti-phase signals would lead
to- mutual extinction, two in-phase signals are accompanied by alternate amplification. During
differential learning, the fluctuating dynamics of the athlete’s performance are assumed to"gel
in resonance with the external force of stochastic perturbations that are provoked by the
movement tasks. In this context the finding of the most effective motor learning approach that
is operationalized by a maximum learning rate can be assumed as finding the optimum task
noise for each individual in each situation.

Historically, the differential training approach is a practical application of the findings of
fundamental research on dynamical systems and artificial neural nets research. In both areas
the theoretical influence of fluctuations and noise has been described independently from
each other. In contrast to dynamical systems research that mainly considers fluctuations as
natural and passive characteristics of primarily cyclic movement systems with different
amplitudes in stable and instable modes (Haken, Kelso, and Bunz, 1985; Schéner and Kelso,
1988), ANN research has inserted/applied different amplitudes of noise actively for
improving the effectiveness of mathematical models of neurons. In combining both aspects,
the differential learning approach considers fluctuations as a specific form of noise and
applied amplified fluctuations to movement learning in general. Due to the problem of
quantifying the frequency content of amplified fluctuations in ballistic movements, these
signals have been termed ‘stochastic perturbations’ in differential learning.

EXPERIMENTAL EVIDENCE FOR DIFFERENTIAL LEARNING

To investigate these theoretical ideas there is an ongoing program of work  to
quantitatively examine the effects of the differential learning approach with more traditional
approaches to pedagogy in sports such as shot put (Beckmann and Schallhorn, 2003), football
(Schsllhorn et al., 2006), tennis (Humpert and Schollhorn, 2006) and high jumping. In this
chapter we consider research on high jumping to illustrate our arguments. Because high jump
includes technical and conditioning elements to training, the effects of differential training on
vertical jumping performance were also examined.

In the research program, 36 male and 21 female (22.8 + 2.2y) novices were categorized
into two experimental and one control group according to the results of a high jump pre-test.
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A pre-post test design was used with a subsequent retention test conducted 10 days after the
posttest. Every test phase included performance of a Fosbury Flop, which has high technical
requirements, and a conditioning test related to high jump performance, in the form of a

jump-and-reach-test. The Fosbury Flop test was accomplished according to IAAF rules. The
jump-and-reach test was carried out standing beside a wall and measured the difference

between reach height in a standing position and reach height after a two legged vertical jump
(figure 1).

Figure 1. Jump and reach test (Weineck, 2000; p. 322).

The two experimental groups participated in a training intervention program over 4
weeks with 2 training sessions per week. One experimental group (T) was trained in a
traditional way according to the IAAF recommendation for high jump (Jonath, Krempel, and
Haag, 1995). The other experimental group (D) was trained by differential training principles.
The control group (CO) did not participate in a specific jump training during the whole
duration of the experiment. Group T was trained with feedback for error correction and
performed a high number of repetitions. These training principles were chosen according to
classical pedagogic recommendations of encouraging learner progression from easy to hard
and from simple to complex exercises. In this approach, every exercise had to be repeated
until movement stability was achieved before participants proceeded to the next, more
complex exercise. In contrast, group D received no corrective instructions and never repeated
a high jump movement twice in the same way, but rather changed their movements after
every trial. For this group, different exercises were applied during the approach, take off,
flight and clearance of the bar. For instance, the high jump approach could be varied by
changes in stiffness at the knees, magnitude of elbow extension ot trunk leaning angle.
Similarly, the take off could be altered by bending the head to the left or right. All members
in the D group adopted the same sequence of differential learning program. Although the
exercises for the differential group were selected randomly by the coach, the existence of a
latent structure cannot be excluded.

To compare effects of the different intervention methods on high jump performance,
results of the two exercises (Fosbury Flop, jump-and-reach test) were analysed statistically
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with a two-way repeated measures ANOVA. In the case of statistical significant interaction
effects of group and test phase, t-tests of pair differences were calculated to detect inter-group
differences at each specific test phase. Concerning the jump-and-reach test, paired t-tests were
calculated for the two experimental groups separately to evaluate if the intervention had a
significant influence on rather conditional factors of high jump performance.

Results showed that the initial average high jump performance of group T amounted to
1.41m (£0.15m). Group D showed an initial performance of 1.40m (+0.16m) height and the
control group reached 1.40m (£0.15m). The differences between the three groups were not
significant. After 4 weeks of training the athletes of group D improved their high jump
performance and reached an average of 1.45m (£0.17m), while group T achieved 1.42m
(+0.15m). The performance and variance of the control group did not change. After a break of
10 days, both experimental groups improved high jump performance by 1 cm on average
(group T: 1.43m; group D: 1.46), while the control group did not change its performance (see
figure 2).

The improvement of high jump performance averaged across the groups was significant
between pre and post test (£ (2,108) = 11.077; p=.000; n° = .170). The test of contrasts of the
within-participant factor shows that the significant change happened between pre and post test
(FQ,54)=11.771; p=.001; 77’ = .178). The difference between the group performances
averaged across the three test phases as the main factor group was not significant (#(2,54) =
278; p=.758; 1’ =.010). However, the change from one test phase to another was
significantly different in at least two groups, as the interaction between the within-participant
factor and the main factor group was significant (¥ (4,108) = 5.885; p = .000; 7 =.179).
Again, contrasts show that improvement differences appeared between the pre and the post
test phase which can be seen in figure 2, too. The improvement from pre- to post test between
group T and group D was significantly different (£ (36) = -2.058; p = .046). Additionally,
differences between performance changes of group D and the control group were highly
significant (¢ (36) = 4.082; p < .001). The comparison of performance changes between group
T and the control group was not significant (¢ (36) = 1.748; p = .089). However, these p-
values were not alpha-corrected. Concerning the T-tests of pair differences between post and
retention test values we did not find any significant results.

High Jump Performance [m]
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Figure 2. High Jump Performance.
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Initial values for the jump-and-reach test averaged between 0.40m (£0.06m) for group T
and the control group and 0.41m (£0.05m) for group D. After 4 weeks of intervention, both
experimental groups improved their performance in jump-and-reach by about 2 cm, while the
controls rested at their starting level on average. After a break of 10 days, group T degraded
again to 0.41m while the other groups maintained their performance level (see figure 3).

The improvement of jump-and-reach performance averaged across the groups was
significant between pre- and post-test (£ (2,108) = 4.591; p = 0.012; 772 =.078). The test of
contrasts of the within-participant factor shows that the significant change happened between
pre and post test (F (1,54) = 6.610; p = .013; 7" = .109). We did not find any difference
between the group performances averaged across the three test phases as the main factor
group was not significant (F (2,54) = .713; p = 495; 1 = .026). The change from one test
phase to another was not statistically significant different between the groups as the
interaction between the inner subject factor and the main factor group was not significant (/'
(4,108) = 1,227, p = 304; ' = .043). .

To evaluate, if the experimental groups significantly improved their jump-and-reach
performance during the intervention, we applied paired t-tests. Performance changes from pre
to post test in group T were not significant (¢ (18) =-1.458; p=.162 and ¢ (18) = 1.268; p =
221), although the improvement from pre to post test of group D was (¢ (18) = -2.317; p =
.032). As the control group did not change its jump-and-reach performance, there was no
significant improvement. Note, these differences do not mean that group D improved its
jump-and-reach performance significantly differently from group T as the interaction effect

was not significant.

Jump-and-reach test performance [m]
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Figure 3. Jump-and-reach performance.

Performances (1.40m-1.60m) and changes in high jump (0.06m) and jump and reach
(0.05m) within the training period of 4 weeks were within the range observed in comparable
investigations in the literature (Rhea, Peterson, Lunt, and Ayllon, 2008). Both experimental
groups were able to improve their fosbury flop performance after 4 weeks of intervention
although their training was totally different: The differential learning group D never repeated
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2 movement twice but was characterized by randomly adding stochastic perturbations to the
Fosbury Flop technique, while the classical training group was trained by means of error
correction and lots of numerous repetitions of perceived correct movements. Most
intriguingly, the differential learning group D improved their performance the most during the
acquisition phase and was able to maintain its performance advance after the 10-day break.
Interactions showed that the improvement rate from pre to post test of group D was
significantly different from that of group T and CO. Since it can be assumed that both groups
improved their conditioning by a comparable amount during this period, it can also be
assumed that the larger performance improvements of the differential learning group were
mainly due to technical or coordinative improvements. Here, the interaction of test phase and
intervention was not significant.

In interpreting these results two explanations can be considered. The first explanation is
related to the performance of errors during the realization of the traditional approach and 1s
thus a question of intervention accomplishment. Note, this explanation has got a negative
nuance. The second one is oriented towards feasible advantages of an alternative approach
and is rather a question of principle concerning the intervention method. This explanation
tends to be more positive. In the first case, it can be argued that the ideal technique proposed
to the traditional training group T was not correct. This explanation can be rejected, because
all the students of this group were informed in advance about the technique by means of
photographs of world class high jumpers. Furthermore, all error corrections were given
according to the IAAF recommended literature that are based on world class athletes as well
and therefore are oriented on the same model (Jonath, Krempel, and Haag, 1995). The
possibility that the corrections were given with the wrong instructions e.g. body related or
metaphorically (Schmidt and Wulf, 1997), can be excluded because both groups received the
same amount of body and metaphorically oriented instructions.

The consequence of the second explanation is to question the traditional understanding of
model learning. Model learning is based on the assumption of a performer-independent ideal
technique and thereby neglects individual sources of variance. Alternatively, the differential
learning approach offers a systems dynamic model for the explanation of the observed
phenomena that has been tested analytically in artificial neural nets (Horak, 1992). Similarly
to successfully trained ANNs, it seems that the athlete has to be confronted by “noisy” data
during the acquisition process in order to optimize not only the next movement but also
subsequent movement trials for solving movement problems. The noise that is applied in an
ANN corresponds to randomly adding stochastic perturbations to the model movement of
high jump in the differential training group. In the differential training group athletes were
confronted with all kinds of additional tasks that forced them to adapt consistently to new
tasks. Therefore, athletes not only experienced a broader area of possible solutions, but they
also seemed to learn to adapt to new situations more individually and more quickly. Within
this explanation the results of the traditional group can also be interpreted. The variations that
can be observed within the repetitions of the traditional group seemed to be too small to allow
the system to follow performance changes over time, consequently leading to less rapid
performance improvement.

Fundamental differences exist between these models at the level of learning principles,
based on the phenomenon that consecutive movement repetitions will always be unequal
(Bernstein, 1967). According to the assumptions of the differential learning approach no
movement repetition will be identical (Bernstein, 1967). Despite the clustering of movement
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classes by means of hypothetical generalized motor programs, their small variations (Heuer,
1988a,b; Heuer and Schmidt, 1988) still lead to an infinite number of combinations of muscle
activation patterns and joint momentums. The implicit assumption of such motor program
structures is that similar movement outcomes are the result of the same motor program with
added noise in the periphery. This assumption can be associated with the principle of strong
causality. Strong causality is typically associated with similar effects that follow similar
causes. With respect to boundary conditions this understanding of causality demands much
more than the understanding of weak causality where only similar causes lead to similar
effects. Mathematically it needs more boundary conditions in order to fulfill this strong
causality which is actually associated with much more parameters to control (Cramer, 1980).
Overall it seems to be neither the most adequate model for describing the variation or noise
phenomena or to provide the basis for learning recommendations. However, over a longer
time scale the ‘repetition without repetitions’ approach is associated with a change in the
movement system, underpinned by reactions at the cellular level. When the movement
system, in this case the athlete, is changing all the time, it seems plausible to provide a
training regime that allows the athlete to cope with the same problem under changed
conditions as well (Schollhorn, Mayer-Kress, Newell, and Michelbrink, in press).

Due to the abstract and general level of the underlying theory of fluctuations, with its
emphasis on system stability and instability, there is significant potential for understanding
how stochastic perturbations function at different levels of description (Verejken, Chapter 6).
The application of stochastic perturbations to the acquisition of catching movements is
particularly interesting, because in this case the interaction of several fluctuating sub-systems
like the visual perception system, the oculo-motor system, and the limb system used for
catching, have to be scaled to each other (Savelsbergh and van der Kamp, Chapter 2).
Similarly, investigations have revealed that the influence of coupled fluctuations between
several athletes for tactical behaviour can also be considered (see Hristovski, Davids, and
Aratijo, Chapter 4, and Passos, Aratjo, Davids, Gouveia, Milho, and Serpa, Chapter 3).

CONCLUSION

To summarise, we have described some data from a program of work that has verified
other results on differential learning, where adding stochastic perturbations to a to-be-learned
movement led to higher improvement rates than traditional learning approaches. In
combination with findings of other investigations on differential learning (e.g., Beckmann and
Schollhorn, 2003; Humpert and Schéllhorn, 2006) all traditional learning approaches
exemplify levels of stochastic perturbation which merely differ in amplitude and frequency.
Accordingly, the search for a most effective learning approach can be considered as the
search for optimum noise since a decrease in learning rate can be observed when too much
noise is put into the system. With the same argument, the findings of Wulf and Shea (2002)
can be explained whereby children show better learning rates with low contextual interference
while adults are more successful with higher levels of contextual interference. It is probable
that movement repetitions of children have a larger level of variability or noise that would
lead to a detrimental effect when additional noise is applied to the learning experience. On the
other hand more advanced athletes have reduced the levels of variability within their
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movement repetitions leading only to suboptimal learning progress and therefore requiring
the combination of additional noise. In principle, the results implied that pedagogists should
think about the typical model oriented understanding of learning, since the addition of random
stochastic perturbations led to at least the same learning progress as in the highly systematic
traditional approach. Future research should be aimed at examining the size and number of
stochastic perturbations during the acquisition phase and according to Frank et al. (2008) to
the noise during the retention phase as well.
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